A New Spectral Clustering Algorithm and Its Simulation
نویسندگان
چکیده
منابع مشابه
A New Spectral Clustering Algorithm
We present a new clustering algorithm that is based on searching for natural gaps in the components of the lowest energy eigenvectors of the Laplacian of a graph. In comparing the performance of the proposed method with a set of other popular methods (KMEANS, spectral-KMEANS, and an agglomerative method) in the context of the Lancichinetti-Fortunato-Radicchi (LFR) Benchmark for undirected weigh...
متن کاملa new algorithm and software of individual life insurance and annuity computation
چکیده ندارد.
15 صفحه اولA Fuzzy C-means Algorithm for Clustering Fuzzy Data and Its Application in Clustering Incomplete Data
The fuzzy c-means clustering algorithm is a useful tool for clustering; but it is convenient only for crisp complete data. In this article, an enhancement of the algorithm is proposed which is suitable for clustering trapezoidal fuzzy data. A linear ranking function is used to define a distance for trapezoidal fuzzy data. Then, as an application, a method based on the proposed algorithm is pres...
متن کاملA Genetic Spectral Clustering Algorithm
As a novel clustering algorithm, spectral clustering is applied in machine learning extensively. Spectral clustering is built upon spectral graph theory, and has the ability to process the clustering of non-convex sample spaces. Most of the existing spectral clustering algorithms are based on k-means algorithm, and k-means algorithm uses the iterative optimization method to find the optimal sol...
متن کاملHow to Round Subspaces: A New Spectral Clustering Algorithm
A basic problem in spectral clustering is the following. If a solution obtained from the spectral relaxation is close to an integral solution, is it possible to find this integral solution even though they might be in completely different basis? In this paper, we propose a new spectral clustering algorithm. It can recover a k-partition such that the subspace corresponding to the span of its ind...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Computer Science and Application
سال: 2017
ISSN: 2161-8801,2161-881X
DOI: 10.12677/csa.2017.711125